Self-supervised Motion Descriptor for Cardiac Phase Detection in 4D CMR Based on Discrete Vector Field Estimations
نویسندگان
چکیده
Cardiac magnetic resonance (CMR) sequences visualise the cardiac function voxel-wise over time. Simultaneously, deep learning-based deformable image registration is able to estimate discrete vector fields which warp one time step of a CMR sequence following in self-supervised manner. However, despite rich source information included these 3D+t fields, standardised interpretation challenging and clinical applications remain limited so far. In this work, we show how efficiently use field describe underlying dynamic process cycle form derived 1D motion descriptor. Additionally, based on expected cardiovascular physiological properties contracting or relaxing ventricle, define set rules that enables identification five phases including end-systole (ES) end-diastole (ED) without usage labels. We evaluate plausibility descriptor two multi-disease, -center, -scanner short-axis datasets. First, by reporting quantitative measures such as periodic frame difference for extracted phases. Second, comparing qualitatively general pattern when temporally resample align descriptors all instances across both The average ED, ES key our approach $$0.80\pm {0.85}$$ , $$0.69\pm {0.79}$$ slightly better than inter-observer variability ( $$1.07\pm {0.86}$$ $$0.91\pm {1.6}$$ ) supervised baseline method $$1.18\pm {1.91}$$ $$1.21\pm {1.78}$$ ). Code labels are available GitHub repository. https://github.com/Cardio-AI/cmr-phase-detection .
منابع مشابه
Aerial Moving Target Detection Based on Motion Vector Field Analysis
An efficient automatic detection strategy for aerial moving targets in airborne forward-looking infrared (FLIR) imagery is presented in this paper. Airborne cameras induce a global motion over all objects in the image, that invalidates motion-based segmentation techniques for static cameras. To overcome this drawback, previous works compensate the camera ego-motion. However, this approach is to...
متن کاملCardiac 4D phase-contrast CMR at 9.4 T using self-gated ultra-short echo time (UTE) imaging
BACKGROUND Time resolved 4D phase contrast (PC) cardiovascular magnetic resonance (CMR) in mice is challenging due to long scan times, small animal ECG-gating and the rapid blood flow and cardiac motion of small rodents. To overcome several of these technical challenges we implemented a retrospectively self-gated 4D PC radial ultra-short echo-time (UTE) acquisition scheme and assessed its perfo...
متن کاملMotion characterization from co-occurrence vector descriptor
A novel operator called the co-occurrence vector to be used for motion characterization is presented. The vector has the advantage of requiring low computation complexity. It allows estimating the relative position, the scale and the rotation of objects in the scene image. This estimation may be useful for obtaining time to impact and relative distance between objects for navigation and collisi...
متن کاملmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
4D geomechanical simulations for field development planning
3D and 4D geomechanical can be time-consuming to build and calibrate. However, once such a model is built, it is relative straightforward to use this model for various field development and management applications. In so doing, the return on the initial investment of time and effort in the creation of a 4D geomechanical model can be substantial. I present a case study where a 4D geomechanical m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2022
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-031-23443-9_7